Чтение с Кровь5: фрагмент из книги «Кости: внутри и снаружи» – Кровь5

Чтение с Кровь5: фрагмент из книги «Кости: внутри и снаружи»

Фото: Издательство «МИФ»

Из чего состоят наши кости? Какие из них являются хранилищем костного мозга? И чем отличается красный костный мозг от желтого? Об этом фрагмент из книги американского ортопеда, профессора Калифорнийского университета в Лос-Анджелесе Роя Милза «Кости: внутри и снаружи», который Кровь5 публикует с разрешения издательства «МИФ».

Полезно знать, особенно если вы следите за своим весом, что кости составляют около пятнадцати процентов массы нашего тела. Примерно треть этого приходится на коллаген, а две трети – на соединения кальция и фосфора.

Таким образом, у человека, вес которого составляет восемьдесят килограммов, двенадцать килограммов костей, из них четыре килограмма коллагена и восемь килограммов гидроксиапатита (соединение кальция и фосфора. – Кровь5) – хватит, чтобы набить чемодан на колесиках (эта информация просто дает представление о костной массе человека, так что не пытайтесь проскользнуть с такой тележкой мимо охраны в аэропорту).

Представьте, что остеобласты (клетки, образующие кость. – Кровь5) плавают в форме для выпечки, наполненной питательным бульоном из воды и кислорода. Следуя своей генетической программе, они будут производить и выделять молекулы коллагена и гидроксиапатита, и – вуаля – кристаллы кальция отложатся в коллагеновой сети: так получается кость.

В сущности, остеобласты замуровывают себя в костном коконе и превращаются в остеоциты – зрелые клетки костной ткани, которые поддерживают структуру кости, но не слишком активно участвуют в ее дальнейшем строительстве и разрушении.

На усердие остеобластов влияют различные сигнальные молекулы (посредники), в основном гормоны гипофиза, щитовидной железы, половых желез (семенников и яичников). Близлежащие клетки тоже вырабатывают сигнальные молекулы, состоящие из аминокислотных цепочек. Эти вещества называют факторами роста: они могут подстегнуть остеобласты, чтобы те начали ускоренно наращивать кость, и при необходимости даже превращают некоторые другие виды клеток в клетки, формирующие костную ткань.

Когда остеобласты сделали свое дело и окружили себя коконами укрепленного коллагеном гидроксиапатита, питательный бульон в форме для выпечки становится очень твердым. По плотности и прочности он почти такой же, как кирпич-сырец.

Но разве можно представить, как наши предки удирают от львов, имея кирпичные кости? А если бы у преследователей кости тоже были из схожего материала? Это была бы скучная погоня, как в замедленном кино.

Конечно, эволюция выглядела совсем не так. Чтобы понять, как все происходило на самом деле, надо познакомиться с некоторыми принципами механики. Они объясняют, почему большинство плоских костей (например, череп и грудина) состоит из двух слоев компактной костной ткани, между которыми, как в сэндвиче, расположена губчатая сердцевина, а также почему длинные кости рук и ног цилиндрические, как трубки велосипедной рамы.

Давайте рассмотрим тонкие плоские кости: это кости черепа, который защищает головной мозг, а также грудина и ребра, которые закрывают сердце и легкие от прямых ударов. Внутренняя и внешняя поверхность этих костей твердая, плотная и гладкая, устойчивая к сгибанию и прокалыванию.

Внутри эти кости пористые, как замороженная губка или гофрированный картон: вещество там легкое, но жесткое, оно и придает костной ткани прочность.

Теперь обратимся к трубчатым костям. Чтобы оценить изящность их структуры, нарисуйте в своем воображении трехметровую деревянную доску шириной сорок пять сантиметров и толщиной пять сантиметров. Такую доску можно перебросить через пропасть шириной два с половиной метра и благополучно перейти на другую сторону ущелья – возможно, доска будет немного пружинить, но ничего страшного. Чтобы убрать пружинистость, доску можно поставить на бок и перейти на цыпочках по пятисантиметровой грани: мостик получится намного уже, зато гораздо жестче. Размеры и физические свойства доски не изменились, однако во втором случае толщина вертикального слоя дерева составит целых сорок пять сантиметров (а не пять, как в первом примере), что уменьшает прогиб.

Именно поэтому лаги пола (поперечные балки) в деревянных каркасных домах ставят на ребро – иначе пол пружинил бы, как трамплин. Конечно, можно взять очень толстые доски и положить их плашмя, но тогда пол выйдет настолько тяжелым и дорогим, что проект рухнет и в физическом, и в финансовом смысле.

Как инженеры добиваются максимальной эффективности от работы балок и перекладин каркаса? Иначе говоря, как получить максимальную отдачу при минимальном расходе ресурсов и с наименьшими усилиями? Для этого применяют двутавровые балки – если посмотреть на них с торца, они выглядят как заглавная буква I.

Мы не будем углубляться в объяснение принципа их действия с формулами и греческими буквами, ограничимся безболезненным обзором. Наибольший вклад в жесткость балки вносят части, расположенные рядом с боковыми гранями: можно убрать часть материала с верхней и нижней поверхности обычной балки прямоугольного сечения, при этом прочность балки сохранится, а ее масса и стоимость снизятся.

Двутавровая балка хорошо сопротивляется изгибающему моменту под действием сил, направленных сверху вниз. Плохо то, что она не слишком устойчива, если силы скручивающие или боковые. Чтобы выдержать и вертикальное, и горизонтальное воздействие, балка должна напоминать нечто вроде тонкого железного креста. Однако если силу приложить под углом (например, два, пять, восемь или одиннадцать часов на условном циферблате), даже такая балка будет недостаточно прочной.

Конструкция, способная противостоять воздействию сил, направленных с разных сторон, получается из множества двутавровых балок, расположенных по кругу. Если соединить их наружные части, середину можно вообще убрать без особой потери прочности. Что останется? Цилиндр. Он устойчив к скручиванию и сгибанию во всех направлениях. Полая сердцевина позволяет облегчить конструкцию и сэкономить материал: сплошной стержень аналогичного размера был бы ненамного жестче. В этом и заключается изящество велосипедных рам, лыжных палок и – как вы уже догадались – костей.

Наши длинные трубчатые кости, в сущности, представляют собой полые трубки, легкие и устойчивые к изгибам со всех сторон.

Обратите внимание, что концы большинства трубчатых костей расширены и покрыты хрящом – еще одной соединительной тканью, состоящей из крупных молекул, рассеянных по коллагеновой сети. В костной ткани «штукатурка» представляет собой твердые, сопротивляющиеся сжатию кристаллы гидроксиапатита. Связующие молекулы хрящевой ткани придают ей упругость и удерживают воду. Они напоминают губку и обеспечивают хрящам – а значит, и концам костей в суставе – способность скользить почти без трения.

О строении и функции хрящей я могу рассказать еще одну захватывающую историю, но они подождут своей книги. Нам, поклонникам костей, достаточно знать, что хрящ, по сравнению с компактным веществом кости, мягкий и скользкий. Утолщения на концах длинных трубчатых костей защищают эту нежную соединительную ткань. Во-первых, они увеличивают площадь соприкосновения, тем самым снижая в каждой отдельной точке давление, которое приходится выдерживать хрящу. Во-вторых, в них содержится в основном губчатая костная ткань, которая слегка пружинит и амортизирует чувствительный к давлению хрящ.

Вы, наверное, замечали, что сердцевина твердого, плотного цилиндра трубчатой кости не совсем пустая. Здесь мы подходим к природе и назначению двух типов костной ткани – компактной и губчатой. Кость чем-то похожа на карамельку с шоколадной начинкой или хрустящий французский багет.

Внешняя ее поверхность твердая и устойчивая к механическому воздействию, что позволяет нам поднимать тяжести. Пористое содержимое центральной полости – губчатое вещество – немного повышает прочность кости и поддерживает поверхностный слой, особенно ближе к концам.

Полости губчатой костной ткани заполнены клетками костного мозга, который тоже бывает двух видов: красный и желтый.

У новорожденных все костномозговые полости заполнены красным костным мозгом, у взрослых людей красный костный мозг находится в основном в плоских костях, позвонках и утолщениях трубчатых костей. Он хорошо снабжается кровью и отвечает за выработку клеток крови, создавая их примерно по пятьсот миллиардов в день.

В желтом костном мозге преобладает жировая ткань, и по мере взросления организма он занимает все больше места внутри кости. Некоторые гурманы считают его настоящим лакомством. Чтобы добраться до этой вкуснятины, они выскребают, грызут, раскалывают и даже обсасывают говяжьи кости.

У некоторых птиц бедренные и плечевые кости полностью лишены костного мозга и являются важными элементами дыхательной системы: в их полости поступает воздух, который затем проходит через легкие и выдыхается. Аналогичные полые кости были и у некоторых динозавров – вероятно, тоже для содействия дыханию. Такое сходство в строении скелета доказывает, что современные птицы произошли от этих доисторических рептилий.

Дотошные читатели могут поинтересоваться: «Раз вокруг губчатой костной ткани такой плотный цилиндр, как же в нее поступает кровь?» Если бы прямо через кость проходило отверстие для полноценных кровеносных сосудов, возникли бы проблемы: отверстие имело бы такие размеры, что нарушилась бы прочность конструкции и значительно снизилась бы ее способность сопротивляться сгибающим и скручивающим силам. В этом случае кости стали бы легко ломаться.

Чтобы избежать этого, природа придумала хитрость: твердую оболочку кости пронизывает множество длинных, тонких, как иголочка, диагональных ходов. В каждом из них есть крохотная артерия и вена. В одних костях таких каналов для питательных веществ больше, в других – меньше. Тазовая кость и по одной кости запястья и лодыжки отличаются тем, что на крупных участках этих костей вообще нет таких отверстий. Из-за нехватки линий снабжения стройматериалами переломы там заживают плохо.

Стать донором Помочь донорам
Читайте также
30 ноября 2023
28 ноября 2023
10 ноября 2023
27 октября 2023
19 октября 2023
12 октября 2023
05 октября 2023
21 сентября 2023
06 сентября 2023
09 августа 2023
28 июля 2023
12 июля 2023