Чтение с Кровь5: фрагмент из книги «Здоровье по Дарвину» – Кровь5

Чтение с Кровь5: фрагмент из книги «Здоровье по Дарвину»

Иллюстрация: Издательство «Альпина Паблишер»

Каким видят рак эволюционные биологи? Почему риск его развития выше у тех, кто родился после 1960 года? И как связаны лейкоз и грипп? Об этом — отрывок из книги Джереми Тейлора «Здоровье по Дарвину. Почему мы болеем и как это связано с эволюцией», который Кровь5 публикует с разрешения издательства «Альпина Паблишер».

В последние двадцать лет эволюционная биология начала активно проникать в область онкологических исследований. Ученые, изучающие эволюцию рака, рассматривают это заболевание как миниатюрную экосистему, состоящую из мириад генетически изменчивых клеточных организмов, или клонов, распределенных по всему пространству опухолевого образования. Эти клоны борются друг с другом за выживание точно так же, как животные или растения конкурируют друг с другом в обычном мире, где климат, доступность питания и другие факторы создают давление отбора, обуславливающее дифференциальное выживание, и, таким образом, стимулируют эволюцию. Раковые клетки соперничают за пищу и кислород и имеют дифференциальную устойчивость к воздействию нашей иммунной системы и токсичной химиотерапии. В результате выживают самые жизнеспособные клоны, которые и становятся доминирующим «видом» в опухолевой экосистеме. Такая генетическая гетерогенность обуславливает агрессивность опухоли, и чем более гетерогенна опухоль — чем выше генетическая вариабельность среди ее раковых клонов, — тем труднее ее уничтожить.

<…>

Мы все являемся мутантами, утверждает Мел Гривз из Центра эволюции рака в Институте онкологических исследований в Великобритании. Если вам больше сорока лет, внимательно посмотрите на свою кожу. Почти наверняка вы увидите на ней массу родинок и пигментных пятен, которые по-научному называются невусами. Хотя большинство из них совершенно безвредны, говорит Гривз, генетический анализ непременно обнаружит во многих из них патологические мутации в типичном онкогене под названием BRAF, который может запускать неконтролируемый рост клеток. Или возьмите образец кожи у любого человека пожилого возраста, усеянный печеночными («старческими») пятнами, и вы найдете там сотни клеточных клонов, содержащих инактивирующие мутации в важнейшем гене p53, который называют «шефом клеточной полиции». Когда этот ген работает нормально, он обеспечивает восстановление поврежденных клеток и заставляет умирать те клетки, которые не подлежат ремонту. Но когда он отключен, он перестает выполнять свою полицейскую функцию и бессилен предотвратить развитие рака. «Если тщательно просканировать тело любого человека, держу пари, вы найдете массу поводов для тревоги, — говорит Гривз. — Лично я никогда бы не согласился на такое сканирование! Это значит, что рак есть у всех людей? Да!»

Если, не дай бог, я внезапно скончаюсь в тот день, когда вы читаете эту главу, и дотошный патологоанатом решит вскрыть мою простату, он почти наверняка обнаружит в ней участки предраковых изменений ткани — так называемый начальный неинвазивный рак, или рак in situ, — хотя это и не было причиной моей смерти. Очаги предракового поражения вполне могут быть обнаружены в моей щитовидной железе, легких, почках, толстой кишке и поджелудочной железе. В Дании аутопсическое исследование женщин в возрастной группе с повышенным риском развития рака молочной железы (которые умерли от заболеваний, не связанных с раком) показало, что 39% из них имели начальный неинвазивный рак, который протекал абсолютно бессимптомно.

Даже у детей — несмотря на то что в возрасте от одного года до пятнадцати лет риск развития клинической формы рака является очень низким и составляет примерно 1 на 800 — исследователи обнаружили, что 1% новорожденных имеет бессимптомные предраковые мутации, способные дать начало развитию острого лимфобластного лейкоза.

Если добавить к этому частоту обнаружения мутаций, ассоциируемых с нейробластомой и раком почек, то окажется, что у каждого пятого новорожденного скрытое предраковое состояние, говорит Гривз.

В какой-то степени, рак — это лотерея. Например, наши эпителиальные клетки и костный мозг производят 10 в 11-й степени клеток в день. Такие высокие темпы деления клеток означают, что даже при низкой частоте мутаций неизбежно происходит их накопление. Ситуация усугубляется современным образом жизни, для которого характерны любовь к солнечным ваннам, потребление чрезмерного количества красного мяса, злоупотребление алкоголем и курением. У женщин ткани груди и яичников подвергаются хроническому воздействию высоких уровней женских половых гормонов из-за отсутствия ранней и регулярной беременности и длительных периодов кормления грудью. Эти культурные тенденции значительно увеличивают имманентные риски, проистекающие из многочисленных погрешностей нашего дизайна или эволюционных компромиссов, как, например, это происходит в случае комбинации светлой кожи, которой эволюция наделила жителей северных широт, и навязчивой идеи получить красивый загар. Современное увеличение продолжительности жизни также расширяет временной интервал для таких генетических аварий. «На фоне подобного мутагенного беспредела, — замечает Гривз, — настоящим чудом является то, что мы способны дожить до девяноста лет с риском развития рака „всего“ один к трем». То, что заболеваемость раком не поднимается выше этого порога, вероятно, связано с тем фактом, что большинство мутаций являются либо нейтральными, либо нефункциональными; это мутации-«пассажиры», а не мутации-«водители», вызывающие развитие опухоли. Даже те мутации, которые затрагивают онкогены или антионкогены, могут приводить к тому, что рак начинает развиваться не в «той» ткани или не в «то» время, чтобы клоны девиантных клеток могли начать свою экспансию. Иногда такие мутации способны немедленно предупредить об опасности другие гены, которые уничтожают мутировавшие клетки; иногда требуют дополнительных мутаций в других генах, без которых не может начаться прогрессия рака.

Поскольку частота таких предраковых поражений существенно превышает частоту развития злокачественных опухолей, может возникнуть соблазн вообще не обращать на них внимания.

Проблема в том, что каждый третий из нас, если проживет достаточно долго, в какой-то момент своей жизни заболеет раком. А недавно проведенное исследование дало еще более устрашающую цифру: для людей, рожденных после 1960 года, этот риск составляет один к двум.

Нам нужно понять, почему большая часть предраковых изменений может смирно сидеть в органах и тканях на протяжении десятилетий и либо регрессировать, либо не причинять никакого вреда, тогда как другие внезапно оживают и стремительно прогрессируют в опасное для жизни заболевание. Понимание динамики эволюции рака может радикально изменить современную онкологию. В настоящее время эффективное лечение рака оказывается между двух огней, поскольку существует постоянный риск, с одной стороны, недостаточной диагностики тех случаев рака, которые развиваются из доброкачественных поражений, а с другой стороны, гипердиагностики, когда врачи проводят хирургическое вмешательство или химиотерапию при предраковых изменениях из опасения, что те могут перерасти в злокачественные.

Легенда о Нейтрофиле: какой он, главный борец с бактериями в нашем теле

Мел Гривз специализируется на лейкозах — группе онкологических заболеваний, которые в последнее время научились довольно успешно лечить. Отчасти это обусловлено тем, что лейкозы имеют менее сложный патогенез с точки зрения количества требуемых мутаций, чем большинство форм солидных опухолей, и главная история успеха связана с хроническим миелоидным лейкозом (ХМЛ).

Это одна из самых простых форм рака, поскольку она вызывается всего одной мутацией-драйвером. ХМЛ, как и все формы лейкемии, возникает в костном мозге, где происходит образование красных и белых клеток крови из стволовых клеток. Это заболевание влияет на белые кровяные клетки, называемые гранулоцитами. Самые распространенные из гранулоцитов — нейтрофилы, классические фагоциты, которые мигрируют к месту локализации инфекции и поглощают враждебные микроорганизмы. Нейтрофилы не возвращаются в кровь, а погибают на месте «сражения», образуя гной, который мы видим при заживлении порезов, укусов и ссадин.

ХМЛ развивается в результате того, что при делении стволовых клеток ген ABL на длинном плече 9-й хромосомы случайно перемещается в 22-ю хромосому — это событие называется транслокацией. Там он присоединятся к гену BCR и образует гибридный ген BCR-ABL. Этот ген начинает производить мутантную форму фермента тирозинкиназы, которая в норме действует как выключатель, запускающий и останавливающий деление клеток. Гибридный ген приводит к тому, что этот выключатель всегда находится в положении «включено», поэтому клетка оказывается в ситуации, когда она не может полностью дифференцироваться в зрелый гранулоцит, но в то же время не может прекратить делиться. В итоге костный мозг и селезенка оказываются забитыми этими незрелыми клетками и не могут нормально производить другие виды красных и белых кровяных клеток. ХМЛ лечат ингибитором тирозинкиназ (главным образом иматинибом, также известным как «гливек»), который останавливает это неконтролируемое деление. Если принимать его каждый день — подобно тому, как вы чистите зубы, — болезнь можно держать под контролем в течение многих десятилетий, но вылечить ее полностью невозможно, объясняет Гривз, поскольку под действием лекарства раковые стволовые клетки просто переходят в состояние «дремлющих». Если перестать принимать лекарство, они мгновенно проснутся и примутся за старое. ХМЛ отличается высокой генетической стабильностью: болезнь вызывается всего одной мутацией-драйвером, и все клетки несут ее идентичную копию. Именно благодаря этой простоте таргетная (направленная) терапия дает хорошие результаты, хотя в конечном счете могут возникнуть дополнительные мутации, вызывающие устойчивость.

А вот острый лимфобластный лейкоз (ОЛЛ) гораздо труднее поддается лечению и требует целого коктейля из химиотерапевтических препаратов, хотя в настоящее время показатель успешности лечения обычно превышает 90% в зависимости от мутационной сложности формы заболевания. Наиболее распространенная форма ОЛЛ затрагивает стволовые клетки, из которых образуются В-лимфоциты.

Эти белые кровяные клетки являются одним из ключевых компонентов нашей адаптивной иммунной системы, поскольку благодаря их почти бесконечной вариабельности можно быстро произвести целую армию клонов В-клеток, нацеленных на конкретные антигены, представленные на поверхности любого вторгшегося микроорганизма. Как и при ХМЛ, инициирующим событием становится образование гибридного гена из двух генов: ETV6 и RUNX1. Это слияние приводит к тому, что предшественники В-клеток полностью не созревают, то есть не превращаются в полноценные функциональные клетки, а вместо этого начинают быстро и бесконтрольно делиться. Их накопление в костном мозге нарушает производство нормальных красных и белых клеток крови. Вот почему у страдающих этим заболеванием детей обычно наблюдаются такие симптомы, как хроническая усталость и анемия, вызванные нехваткой красных клеток крови; кровотечения и беспричинное появление гематом из-за низкого содержания тромбоцитов, пониженная сопротивляемость инфекциям в связи с ослабленной иммунной системой.

Этот гибридный ген не наследуется, говорит Гривз, а образуется в результате новых мутаций, которые могут возникнуть в любой момент: с шестой недели развития эмбриона, когда он начинает производить собственную кровь, и до рождения. Поскольку стволовые клетки костного мозга делятся очень быстро и при каждом цикле клеточного деления неизбежно случаются ошибки, около 1% детей — то есть каждый сотый ребенок — рождаются с этим мутантным гибридным геном. Однако заболеваемость острым лимфобластным лейкозом намного ниже, всего 1 на 2 тысячи, так что подавляющее большинство носителей этой мутации никогда не заболевают лейкемией. Гривз и его коллеги считают, что в настоящее время они приблизились к раскрытию тайны, почему из всех носителей мутированного гена лейкемия поражает лишь некоторых, а большинство обходит стороной. Ответ, по их мнению, кроется в хладнокровном взвешивании дарвиновской эволюцией шансов на выживание и резком сокращении воздействия патогенов на человеческий организм в настоящее время по сравнению с тем, что было сто лет назад и больше.

Острый лимфобластный лейкоз идет вслед за повышением уровня жизни. В западных странах заболеваемость ОЛЛ значительно выросла с середины прошлого века и продолжает расти примерно на 1% в год.

Гривз считает, что ОЛЛ — болезнь «двойного удара». Первый удар — это образование гибридного гена в период внутриутробного развития. Второй удар — аномальная реакция иммунной системы на ярко выраженную инфекцию, поражающую детей после окончания раннего возраста, во время которого маленькие дети обычно подвергаются наиболее интенсивным инфекционным атакам, помогающим их иммунной системе тренироваться и созревать. Если же иммунная система не натренирована и разрегулирована, как это часто бывает у современных детей, этот второй «отложенный удар» может подвергать пролиферирующие клетки костного мозга чрезмерному стрессу и стимулировать образование критического набора вторичных мутаций. Таким образом, гипотеза Гривза об «отложенном инфекционном факторе» полностью соответствует гигиенической гипотезе, которая объясняет современные эпидемии аллергических и аутоиммунных заболеваний с точки зрения отсутствия раннего воздействия широкого круга паразитических червей, грибов и бактерий, повсеместно распространенных во времена наших предков.

В большинстве случаев лейкемия развивается у детей в возрасте от двух до пяти лет и редко встречается после двенадцати. Предполагается (хотя это и неизвестно наверняка), что клоны предшественников В-клеток с гибридным геном через какое-то время после рождения ребенка вымирают. Но Гривз установил, что клоны с гибридным геном в некоторых случаях могут выживать до тех пор, пока в игру не вступит отложенный инфекционный фактор.

Гибридный ген активирует в предшественниках В-лимфоцитов молекулу, называемую рецептором эритропоэтина, которая в норме активна только в предшественниках красных кровяных клеток, где она заставляет их делиться и не дает умирать. Иными словами, гибридный ген использует механизм выживания, предназначенный для другого типа клеток. Когда через несколько лет, рассуждает Гривз, носящий этот ген ребенок подпадает под действие отложенного инфекционного фактора, его иммунная система запускает интенсивную реакцию. В конце концов его организм начинает производить цитокин, известный как трансформирующий фактор роста бета (TGF-β), который снижает чрезмерное воспаление за счет того, что останавливает деление клеток — предшественников лимфоцитов и прекращает мобилизацию иммунных клеток на борьбу с инфекцией. Однако лимфоциты с гибридным геном глухи к TGF-β. В то время как образование нормальных лимфоцитов затормаживается, мутантные лимфоциты продолжают активно делиться и оказываются доминирующими в костном мозге. Таким образом, отложенная инфекция способствует быстрому увеличению количества мутантных клонов за счет нормальных клеток, и эта пролиферация становится прелюдией к развитию симптоматической лейкемии. В настоящее время Гривз также установил, как именно лимфоциты с гибридным геном увеличивают количество раковых мутаций. В этом оказался повинен процесс, который эволюция создала исключительно для лимфоидных клеток — и который, как выяснилось, скрывает в себе серьезный дефект.

Ключевую роль в злокачественном развитии, объясняет Гривз, играет механизм, позволяющий нашим B-клеткам производить широкое разнообразие антител, с тем чтобы эффективно распознавать антигены, представленные на поверхности вторгающихся в наш организм микробов, и давать им отпор. Молекулы иммуноглобулина, из которых состоят наши антитела, имеют гипервариабельные участки, способные быстро перестраиваться и создавать почти бесконечное число генных мутаций. Около 500 миллионов лет назад наши первые позвоночные предки обзавелись двумя специальными рекомбинантными ферментами — RAG1 и RAG2. Сегодня эти ферменты целенаправленно воздействуют на гены наших иммуноглобулиновых антител и заставляют их мутировать, создавая бесчисленные рекомбинации. Эти рекомбинантные ферменты активны только в лимфоидных клетках, и в норме, как только они выполняют свою работу и клетка перестает делиться и превращается в зрелый В-лимфоцит, они отключаются. Однако в присутствии гибридного гена, когда клетки продолжают делиться и не достигают полной зрелости, производство рекомбинантных ферментов RAG1 и RAG2 не прекращается. Вскоре их становится так много, что им попросту не хватает генов иммуноглобулина, которые они могут разрезать на куски и перетасовать, поэтому они начинают охоту на другие гены. Так временное и точно нацеленное мутагенное воздействие на молекулы иммуноглобулина перерастает в рекомбинантный хаос. В результате такого побочного действия рекомбинантных ферментов клетки — предшественники лимфоцитов, пойманные в круговорот клеточного деления без достижения полной дифференциации и зрелости, увеличивают число дополнительных мутаций до десятка и более. «Эволюция не создает идеальные механизмы, как нам бы того хотелось, она просто выбирает оптимальные, — говорит Гривз. — И в данном случае побочным эффектом этого механизма иммунной защиты может быть развитие рака крови в детском возрасте. Это пример не очень умного эволюционного дизайна, когда одно вещество — рекомбинантный фермент — может быть одновременно необходимым и опасным для жизни».

Пока ученым не удается собрать окончательные эпидемиологические доказательства роли инфекции как «второго ключевого фактора» вследствие низкого уровня заболеваемости лейкемией среди населения в целом. Тем не менее исследования, проведенные в Великобритании, странах Скандинавии и в Калифорнии, показали, что посещение разного рода детских центров, где малыши с раннего возраста подвергаются более интенсивному и разнообразному воздействию инфекций, в некоторой степени защищает от развития острого лимфобластного лейкоза. В бывшей Восточной Германии, где государство поощряло матерей как можно быстрее возвращаться к работе, отдавая детей в огромные центры дневного пребывания — детские сады и ясли, уровень заболеваемости лейкемией был в три раза ниже, чем в Западной Германии. После объединения Германии от этого социального института решили отказаться в пользу домашнего воспитания — и уровень заболеваемости быстро сравнялся с западногерманским.

Двадцать лет исследований «кластеров лейкемии» — небольших географических зон с повышенной частотой заболеваемости лейкемией — больше, чем что-либо другое, убедили исследователей в правильности гипотезы об инфекционном факторе отложенного действия.

<…>

В настоящее время Гривз исследует лейкозный кластер в одной начальной школе в Милане: «Там мы имеем целых семь случаев заболевания лейкозом. На первый взгляд кажется, что это не так уж много, но четыре случая произошли в одной школе в течение всего одного месяца, а вскоре за ними последовали еще три случая. А это уже запредельный уровень. В школе такого размера можно было бы ожидать максимум один случай за пятнадцать лет». Тот факт, что дети в возрасте от трех до одиннадцати лет заболели лейкемией практически одновременно, говорит о наличии общего внешнего триггера.

Команда Гривза изучила все события, произошедшие за последнее время, и обнаружила, что несколько месяцев назад в школе была эпидемия свиного гриппа. Тогда как в среднем свиным гриппом заразился каждый третий ребенок в школе, им переболели все семеро детей, впоследствии заболевших лейкемией.

«Таким образом, из-за небольшого размера выборки статистика не слишком убедительна, но она четко указывает на то, что свиной грипп мог послужить тем самым вторым отложенным фактором», — говорит Гривз. Еще одно подтверждающее доказательство предоставляет Оксфордское эпидемиологическое исследование, в ходе которого были отслежены все случаи заболевания острым лимфобластным лейкозом в Великобритании в течение более чем тридцати последних лет. Было обнаружено два пика, и оба они наступили спустя шесть месяцев после сезонной эпидемии гриппа.

Стать донором Помочь донорам
Читайте также
22 июня 2022
16 июня 2022
03 июня 2022
26 мая 2022
13 мая 2022
28 апреля 2022
08 апреля 2022
01 апреля 2022
30 марта 2022
23 марта 2022
16 марта 2022
10 марта 2022